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Effect of fluids on the Q factor and resonance frequency of oscillating micrometer
and nanometer scale beams
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Resonance oscillations of micrometer and nanometer scale beams in gases and liquids have increasingly
important applications in physics and biology. In this work, we calculate fluid damping and its effect on
damped resonance frequeney, and quality factoiQ, for oscillating long beams at micrometer and submi-
crometer scales. For beams of nanometer scale, which are smaller than the mean free path of air molecules at
standard conditions, the continuum limit breaks down and the commonly used Stokes drag calculation must be
replaced by the appropriate calculation for rarefied gas flow. At scales where the continuum limit holds, this
quasisteady Stokes solution is often still inapplicable due to the high resonant frequency associated with small
beams, typically 1DMHz. The unsteady drag can be over two orders of magnitude higher than that predicted
by the quasisteady Stokes solution and the added mass is non-negligible. Here we c@ldalkttas as a
function of gas pressure over the range from 1orr to 1@ torr, corresponding to free molecular to con-
tinuum limit. The comparison of th@ factors for two typical beams at various pressures suggests an advantage
of using submicrometer scale over micrometer scale beams for applications near ambient pressure.
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Oscillating beams at micrometer and submicrometements of Sekariet al. [6] use laser-light driving to over-
scales play at least two interesting roles. First, they offecome fluid damping losses in a paddle-beam structure oscil-
simple systems for investigating scale effects of energy dislating in air at atmospheric pressure. Quantification of fluid
sipation mechanisms both in the beam matgfig?] and as a  effects at scales relevant to these applications has focused
result of interaction with their environmefig,3]. Second, Strongly on continuum flowf3,7,8. In this paper we present
their potentia| for app”cations such as atomic force micros2& framework which enables Simple calculations with either a
copy in fluids, small biological mass detection via resonan€ontinuum or noncontinuum approach, as appropriate to the
frequency shift, and viscometry continues to grow. The resoProblem. Calculations for beams of submicrometer and
nance peak frequencywf) and theQ factor (Q), which 10 pum width suggest a surprising advantage of t_he use of
allows measurement of dissipation through the sharpness bmicrometer scale beams over larger beams in air near

the resonant peak are the most widely used quantities iﬁm']l'evsopr:iesncegtrsesasrtelrev;/orth noting as the beam approaches
these applications. P g pp

submicrometer scale. First, the continuum limit can break

The ambiem gas pressure limit be'O.W Wh!Ch. gas dampif‘ own even at atmospheric pressure, as seen in Fig. 1. Thus
becomes negligible compared to damping within the materi he usual quasisteady Stokes drag estimate needs to be re-

of the beam is of interest in many studies with small Osc'l'placed by rarefied gas flow results. Second, these beams typi-
lators. Yasumurat al. [2] suggest a value of 16 atm for

this limit, while a different value is provided by Ho and Tai 10 ; , . .

[4] (10 *~10"2 atm). In this paper we show that these dis- @ 5 (@l = 10 um beam

parate empirical thumb rules may be replaced by a calcula: 1 |- \\ .................... ................. (b).w.aﬂ-l.»mbegm AAAAAAAAAAAAAAAA 4

tion using beam properties and gas temperature and molectiz O ;‘\\ (c) W =0.002 m carbon nanotube

lar weight as inputs. R . S T IR R _
Additionally, the requirement of working in vacuum often 3 @ e “al '
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places an inconvenient constraint on many applications, suclg 1o f--> NG Seg *; Free Molecular Flow - 1

as small mass measurement through resonance frequen A TNe. Kn>10

shift. This has been used for biological cell detect[&i, E | SO §
. . . . . 2

which would be far more useful in either standard air or in s B

. o : : ~, :
liquid. The accuracy of measurement of the peak frequencyg o |.............. Crossover - rorv e e S Snad

shift depends on th€) factor of the beam. Recent experi- & : : 5
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cally have a high frequency, on the order of MHz, with ~ Terms in the third set of large square brackets yield the modi-
stronger unsteady effects, if in continuum flow. Unsteadyfication ofQ, due to fluid added mass and damping and have
effects have two manifestationd) the presence of an added value 1 in vacuum. Terms in the first set of large square
mass associated with the force to accelerate surroundingyackets show that the scaling dependencieQ pbn geom-
fluid, and(2) a frequency dependence of the damping coefetry and propertiesw*,t?,17%,(Eps)*/? accrue from beam
ficient. In this paper, we study fluid damping and its conse-solid mass and stiffness alone, which is useful in determining
quence orQ factor in both the molecular and the unsteadythe scaling properties of the structural damping coefficient
continuum limit. To do so, we first rela@ for the beam ina Cs from measured), in vacuum.
fluid to the Q value in vacuum. We now move to the task of determining fluid related
TheQ factor for a linear harmonic oscillator with malss  effects, specifically the values for dampi@y and added
stiffnesskK (wo=K/M), and dampingC, defined in terms massM¢, where it is relevant. Operation with beam oscilla-
of average energy stored and dissipated per cycle, may Bers in a gaseous environment, at low pressures or with
written as nanoscale beams at atmospheric pressure, may give rise to
situations where the mean free path of gas molecules is not
2 1 small compared to beam size. In this case, the molecule
Ecioreg K+ Mw? Qb 4 number density and properties such as density and viscosity
Q=27 = = , (1)  computed from it will show large, discontinuous fluctuations
Eaiss 2Cw , 1 about their mean values; solutions of the Navier-Stokes
Qp_g equation which consider the fluid as a continuum are no
longer valid. With decreasing beam size, the departure from

Wherer:‘/M K/C is a property_dependent, dimensiomesscontinuum increases and the fluid moves to the regime of
factor. The expression in terms @, is obtained by evalu- free molecular flow. In this regime, a large mean free path

ating Q for beam oscillation frequencys equal to the With respect to beam size and distance from walls implies
damped resonance peak frequency, that molecules which suffer a collision with the beam are

unlikely to suffer a second collision with it. The velocity

K c2 \1v2 1 1*? distribution function of molecules seen by the beam will
og=| 7| 1= 57| | Twol-—= (2)  therefore remain unchanged as a result of the motion of the
2
M 2MK 2Q . :
p beam and allows for a simpler computation of force on the

beam.

For gases, determining the regime of flow is clearly the
st step in calculating fluid forces on the beam. To do so, we
compute the mean free path.(,). For a dilute gas with
molecules modeled as hard spheres of a single diandeter
the scattering cross sectien= 7d? [9], the mean free path
Lcales inversely witl and number density:

WhenQp>1, Q reduces taQ, and wy to w,. However, if
the damping is significant, even when the motion remain§ir
harmonic,wy will be significantly different from the natural
frequency in vacuum and iteration between Eg). and the
calculation below for fluid damping is required. To include
damping forces due to ambient fluid we define total dampin
C=Cs+Cs, where the subscripts,f denote structural
(solid) and fluid quantities respectively. In some regimes of

flow, the force on the beam due to the fluid, opposing the | 1 ZOKBT

motion, in phase with the acceleration, is significant. This mfp™ \/Zrn =0. "dzp’ ®)
may be represented by an added nidssand the oscillating

beam may be considered to have an effective nhhssM .
M, y *  whereKg is the Boltzmann constant, and P the absolute

From Ref.[1], the undamped resonance frequency of a’;emperature and pressure, respectively. Wit 0.37 nm,

beam of lengtH, width w (normal to oscillatio, and thick-
nesst, in the absence of fluid added mass, is given by

or air at standard temperature and presslg,~65 nm.
The Knudsen number Kn measures the ratio of the mean
free path of gas molecules to the size of the beam. For long
K El E t be_ams, we n_ote.that the appropriate measure of beam size for
wo= /—S=(Cl)2 ——=(Cy)21 [ —— (3) fluid interaction isw, the transverse dimension normal to the
Ms M3 12p5)2 direction of motion, hence Kalpy¢,/w. The undamped

resonance frequency, however, varies linearly with thickness

whereKs, ps, E, andl are the effective stiffness, density, { and is independent aof, hence we may specify the beam
Young's modulus, and cross-sectional moment of inertia of;singl,w,t or I,w, w,.

doubly clamped beams vibrating in the fundamental mode. Itontinuum regime for Ks0.01, in the free molecular re-
the effective stiffnesK in the fluid remains unchanged from gime for Kn>10; 0.05Kn<10 defines a crossover regime
its value in vacuunKs, given by Eq.(3), substituting for  \yhere neither continuum nor free molecular flow adequately
effectiveM, K, andCin Q,, we obtain describe gas behavift0]. Figure 1 shows the flow regimes
for beams of three widths, 16m, 100 nm, and 2 nm. The 2
1/2 2 1/2 ’ ’ ’
=|c2 E_ps ﬂ i m 4 nm carbon nanotube would be in the free molecular regime
Qp 1 I ( ) . .
12 Csll 1+(Ct/Cy) up to pressures of 1 atm. Like the 100 nm beam, a continuum
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number, may be found in Reff11]. After evaluation of four
integrals at vanishingly small Mach numbers, this solution
yields Eq.(7), with a nearly identical constaf2.03. Damp-

ing coefficients for two beams as a function of pressure in
this regime, plotted in Fig. 2, are 2—5 orders of magnitude
lower than the quasisteady continuum solution.

In the crossover regime between free molecular and con-
tinuum flow, the velocity distribution function of molecules
interacting with the beam begins to show a deviation due to
previous interactions with it. In this regime, we use a solu-
tion of the Boltzmann equation with the BGK model, which
employs a simplified collision operator with a single time
scale(for a discussion of the BGK model, see, for example,
Ref. [10]). From this solution for flow past a cylind¢i2],
we obtain a value for the damping coefficient,

Dimensionless Fluid Damping Coefficient (C/ = 1. 1)
ak,

e
10®

10 10 10 10° m;o‘ ;02 Fd 773’2Kn
Pressure P (atm) C; RETHE mnU;,lw , (8)
FIG. 2. Nondimensional gas damping coefficient, computed for
dry N, at 300 K for beams witha) w= 100 nm, 530 MHz fre- 2\7Kn 1
_ a=In —y+—+A\/;Kn, (9)
quency, (b) w=10 um, 1 MHz frequency and aspect ratiéw S 2

=20. Short vertical lines on each curve mark the change from the h the Mach ber. is th tio of b locity t
free molecular solutiorfdamping varies linearly with pressure wheres, the Mach number, is the ratio of beam velocity to

the steady Boltzmann-BGK crossover solution, which underpredictéhe molecular velocity ang is the Euler constart0.5772.
unsteady damping and shows a jump at the continuum limit. Tem!n this regime, the assumption that all molecules are specu-
perature and molecular weight of the gas are the only other inputd@rly reflected is incorrectd, dependent on the slip velocity,

varies between 1 and 1.5 in the Knudsen number range
Navier-Stokes solution is inappropriate for it even at pres0.01-50. We note that the tabular values foin Ref. [12]
sures in tens of atmospheres. The largespub®beam will ~ can be approximated to within 2% rngand 4% maximum
begin to show continuum behavior at pressures above 1 atrITor, by

In the continuum regime, the fluid densjiyy=mn, where 1
mis the mass of one molecule. For dilute gases, from kinetic A=1+ E(l—efK"m)- (10
theory, the dynamic viscosity is

The crossover solutiofi2] is valid for low Mach number
u=0.4MnUpl ;mp. (6) S If the Mach number is not low enough, in Eqg. (8) be-

HereU,,= V3KgNT/M, is the root mean square value from COMes zero, then negative, leading to large unphys_ical values
the Maxwellian distribution for molecular velocityy is ~ fOr Ci. The low Mach number requirement effectively re-
Avogadro’s number, anM , is the molecular weight in kg/ stricts use of this solution to v:_alues of Kn su;h thai& In

mol (e.g., 0.028 for N). The coefficient 0.45, from Ref. the h|gh Knudsen number limit, the expression in parenthe-
[10], is obtained using a hard sphere molecular model foF€S iN EQ{(8) tends to a constant value close to 2, in accord
interactions and yields values in close agreement with thos@ith the free molecular solution, E@7). At the low end of
tabulated from experiment for common gases at atmospheri@€ Crossover regime, approaching continuum flow, the ex-
pressure. Sincéy, is inversely proportional to density, pression yle_Ids vaIue; almost equal to Kn. This solution for
the dynamic viscosity is independent of fluid density. Ford@mpingCy is plotted in Fig. 2.

consistency, we will usg:, calculated by Eq(6), as a pa- We now consider the case when the continuum limit for
rameter for presenting; in nondimensional form in all the fluid flow around the oscillating beam holds, as for I|_qU|ds
flow regimes as shown in Fig. 2. and for gases when the mean free path of molecules is much

We first derive the force on the beam in the free moleculaf€SS than the diameter of the beam. Stokes’ familiar quasi-
limit. Assuming that all the molecules are specularly re-steady so_Iuthn is frequently used for_ a quick estimate. For
flected, the drag forcE, is caused by the difference in mo- small oscnlatlng beams, such an estimate can be over two
mentum exchange of the gas molecules striking the front anflrders of magnitude too low, when compared to experiments
back of the moving beam. A simplified calculation for a |7] @nd to calculations using a solution which correctly ac-
plane of lengtH, width w, and molecular velocity,,, along counts for the frequency dependence, as presented in recent

the direction of motion of the beam yields work (e.g., Refs[$,7]). . .
Two relevant dimensionless parameters arise for unsteady,

Fq incompressible flow(divergence-free velocity field), gov-
Ci=- =2 mnUylw. (1) ermed by the Navier-Stoke&lS) equations,
A more exhaustive treatment for a beam of cylindrical geom- o +(u-V)u=— ve +pAuU. (11)
etry, valid for nonspecular reflection and arbitrary Mach dt o

036307-3



R. B. BHILADVALA AND Z. J. WANG PHYSICAL REVIEW E 69, 036307 (2004

The Reynolds number, Rg(Uw/v), which measures the g%
strength of the nonlinear inertial forces to viscous forces, isg
based on the oscillation velocityJ(=Aw), whereA is the
oscillation amplitude.v=u/p;¢ is the kinematic viscosity.
The second, a frequency paramete],=(U/ow)=(A/w),

is the ratio of the nonlinear term to the time-derivative term
in the NS equations. If the oscillation amplitudeis small
compared to the beam lateral dimenswrP, is small. If Re 5 ; : v : :
and P, are both small, the nonlinear term is small comparedg PP I W ........... .......... ........... ........... ............ ........... d
to both viscous and time derivative terms and a solution ofg : : : ' : :
the NS equation which neglects the nonlinear term whileZ : : : . : : :
retaining the time derivative term is appropriate. Stokes’ fa- 3 SR ....... ............ R ............ T ........... J

X

Dampihg :
BKC=Q/(nuI)

20

¢
=
T

ping px, Added Ma

le:

miliar formulas for drag from steady viscous flow around a g

H 5 H k7 . : : : L= -
sphere (GruRu) or cylinder are solutions which neglect & == - 5 f b ci i aos soiuion for opinder, iegd |~~~ ]
both the nonlinear term as well as the unsteady term. FoIg : : g : : : :
typical micro-oscillator frequencies, the velocity gradient © o5 1 15 2 25 3 35 4

generation at the oscillator wdtime scale 1) is faster than Dimensionless Viscous Layer Thickness (3/w ) = ( 2viow? )

can be smoothed by viscosit§ime scalew?/4v) and the
y o V) FIG. 3. Unsteady NS solution for fluid damping and added mass

unsteady term may not be neglected. The steady solutiop | inder i i ﬂ lid for liquid qf
does not account for the frequency dependence of dampingaa'rs("’;s (\sztgh ?’é% g; N continuum Tlow, valid for fiquids and for

and does not correctly represent its variation with beam siz
and fluid properties. _ _
For long beams with a cross section of aspect ratio nedr—200 «m beam, with a frequency of 1 MHz/w varies

one, we use the unsteady solution for flow around a longfom 0-38 to 0.05 and nondimensional damping varies from
cylinder oscillating normal to its axis, also due to Stokes,/ 0 40 times the quasisteady value. This shows that for
discussed in Rosenhedi3]. This solution is presented in typical micrometer and nanometer scale beams, at pressures
terms of two dimensionless parametetsfor fluid damping ~ Within the continuum ranges/w<1, and we can have a
and k., for fluid added mass. They are calculated in terms of@rge contribution from unsteady effects. The jump disconti-
modified Bessel functions involving a single dimensionlesMUity at the crossover-continuum interface in Fig. 2 arises
parametes, which measures the strength of the time deriva-from the fact that for these_ oscillators, while higher damping
tive term with respect to the viscous teri.is related to due to unsteady effects is correctly captured by the con-

familiar physical quantities through tinuum solution, all available crossover solutions are re-
stricted to steady flow and hence approach the quasisteady
B=(wW?/4v)=0.5w/5)%>=(Rel4,), (120  Stokes solution at the continuum end. Development of solu-

tions which include the effects of unsteadiness would be of
where 6= \2v/w measures the viscous layer thickness. Tovalue to accurate calculations for oscillators in this regime.
avoid ambiguities in selecting the correct Bessel functions, Rewriting Eq.(13) using Eq.(6) for viscosity, damping
we present in Ref{14], six lines of code for the commonly
available software programaTLAB , which enables calcula- Ci=[1.418kKnimnUwl (14)
tion of x; and «,,,, based on a more convenient equivalent
expression for the solutidi8]. The fluid damping coefficient shows a linear dependence on Kn, consistent with the cross-
C; we require is related ta. through over solution. We have shown that fluid dampi@g in a
Ci=mul Br (13) gaseous environment for the beam in all flow regimes is
1= THIPKe- proportional to (MnU;,wl). We have specified how the pro-
For a fixed dynamic viscosity=vp;, the dimensionless Portionality constants or dimensionless groups may be calcu-
product B, specifies the dependence of fluid damping onlated from _beam geometry, oscillation frequency and gas mo-
beam width, oscillation frequency and fluid density. It is ecular weight, pressure, and temperature for each of the
plotted in Fig. 3. When the viscous layer thickness is mucHlree regimes. In liquids, the kinematic viscosity, beam size,
larger than beam size, it approaches the constant value of 18d frequency may be used with E42) and Ref.[14] to
from the quasisteady Stokes solution for a long beatw ( determine fluid damping. The value Gf is used in Eq(4)
=20). It increases rapidly with decreasing viscous layef©® Calculate the quality factoQ,. Effective dampingC
thicknesses below beam widt/(v<1), showing that large = Cs T C1 is used in Eq(2) to check the frequency change

errors will result from using Stokes' steady solution for dué to fluid damping.
damping in this range. For example, Fig. 2 shows the pres- |n the continuum regime where added mass effects may

sure and damping value ranges associated with continuuff Significant, the modification Q,, due to fluid added mass

flow for two beams. In this range, for the=100 nm,| N EQ.(4) is the factor

=2 um beam, frequency 500 MH%/w varies from 0.77 to 12

0.24 and fr.om Fig. 3, nondimensional damping varies from Ry=(1+M/My¥2=| 1+ ﬂKm , (15)
4.5 to 10 times the quasisteady value. For te 10 um, Ps
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and the effective mas$/ = MSRﬁ,, may be used in Eq2) 10° e
to check the frequency change due to fluid added mass. Th
factor R, is governed by two dimensionless parameters, the
ratio of fluid to solid density, andk,,, which specifies,
through B, the fluid added mass dependency on kinematic
viscosity, oscillation frequency and beam widiy,, calcu-
lated as in Ref[14], is plotted in Fig. 3. It reduces to the
inviscid limit of 1 as the kinematic viscosity becomes small.
For dry N, at 10 atm and 300 K, and for the beams in Fig. 2,
R, is 1.007, 1.005, making the effective mass 1.4 and 1%;
higher than beam solid madd., for the 0.1 and 1Qum
beams, respectively. For the same beams in water the factc
Ry is 1.46, 1.32 with beam effective mass 2.1, 1.7 tirfves
and in mercuryR,, is 3.14, 2.86, with beam effective mass
9.9, 8.2 timesVs. . : :
The resulting variation of) factor with pressure in dry * 100 10
nitrogen is plotted in Fig. 4 for two beams and is seen to be Pressure (Torr)

in accord with available experimental data. The valuesdor g 4. calculatedQ factor as a function of pressure in dry
in vacuum have been taken from experimental dat@l.  nitrogen at 300 K, for beams with aspect ralior=20 and(a) w
The pressure limit below which fluid damping causes a neg=100 nm, 530 MHz frequency, doubly clamped beésalid line)
|Ig|b|e decrease in thQ factor is 1 mtorr for a 1Q.Lm wide (b) w=10 um, 85 kHz frequency, cantilever beafdashed ling
cantilever beam and about 1 torr for the 100 nm wide beamgxperimental datd*) are from Fig. 4 of Yasumurat al. [15]. A
This limit depends on the fluid, beam size, and valu®afh  more complete unsteady Boltzmann solution, currently unavailable
vacuum(or C,) and may be calculated as shown here. to the authors, would remove the jump discontinuity at the
In vacuum, the larger beam with higher surface to volumecrossover-continuum interface, as roughly indicated by the light
has a higherQ factor. But in the presence of air, as the solid lines.

pressure is increased, tkfactor of the larger beam begins

to decrease at an earlier pressure. This results in a revers§F¢Hators should significantly improve th@ factor when
constrained to work in air. Over a large range of pressures,

with the Q factor of the smaller beam being over an order ofI ng beams of several micrometers width suffer seriously

magnitude higher than that of the larger beam. This revers om air damping while submicrometer scale beams do not
of the Q factor at low pressure is due to the fact that damping ping |

varies linearly with width in the free molecular regime. We acknowledge the financial support of the NSF through
In the continuum regime, it is sustained by the unsteady efthe Cornell Center for Materials Research. We wish to thank
fects on damping. The width dependence of dampi8g.} L. Sekaric for an introduction to the problem, Harold Craig-
from the unsteady solution is not seen in the quasisteadigead for his strong support and encouragement of this work,
Stokes solution. D. Koch and J. Parpia for insightful questions and discus-

These results are particularly interesting for instrumention, and M. Foquet for useful comments on a draft of the
design as they suggest that moving to submicrometer-sizetianuscript.
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