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Effect of fluids on the Q factor and resonance frequency of oscillating micrometer
and nanometer scale beams

Rustom B. Bhiladvala* and Z. Jane Wang†
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~Received 22 January 2003; revised manuscript received 30 October 2003; published 31 March 2004!

Resonance oscillations of micrometer and nanometer scale beams in gases and liquids have increasingly
important applications in physics and biology. In this work, we calculate fluid damping and its effect on
damped resonance frequencyvd , and quality factorQ, for oscillating long beams at micrometer and submi-
crometer scales. For beams of nanometer scale, which are smaller than the mean free path of air molecules at
standard conditions, the continuum limit breaks down and the commonly used Stokes drag calculation must be
replaced by the appropriate calculation for rarefied gas flow. At scales where the continuum limit holds, this
quasisteady Stokes solution is often still inapplicable due to the high resonant frequency associated with small
beams, typically 102 MHz. The unsteady drag can be over two orders of magnitude higher than that predicted
by the quasisteady Stokes solution and the added mass is non-negligible. Here we calculateQ factors as a
function of gas pressure over the range from 1025 torr to 105 torr, corresponding to free molecular to con-
tinuum limit. The comparison of theQ factors for two typical beams at various pressures suggests an advantage
of using submicrometer scale over micrometer scale beams for applications near ambient pressure.

DOI: 10.1103/PhysRevE.69.036307 PACS number~s!: 47.10.1g, 47.15.Gf, 47.45.2n, 81.07.2b
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Oscillating beams at micrometer and submicrome
scales play at least two interesting roles. First, they o
simple systems for investigating scale effects of energy
sipation mechanisms both in the beam material@1,2# and as a
result of interaction with their environment@2,3#. Second,
their potential for applications such as atomic force micr
copy in fluids, small biological mass detection via reson
frequency shift, and viscometry continues to grow. The re
nance peak frequency (vd) and theQ factor (Q), which
allows measurement of dissipation through the sharpnes
the resonant peak are the most widely used quantitie
these applications.

The ambient gas pressure limit below which gas damp
becomes negligible compared to damping within the mate
of the beam is of interest in many studies with small os
lators. Yasumuraet al. @2# suggest a value of 1026 atm for
this limit, while a different value is provided by Ho and T
@4# (1024–1023 atm!. In this paper we show that these di
parate empirical thumb rules may be replaced by a calc
tion using beam properties and gas temperature and mo
lar weight as inputs.

Additionally, the requirement of working in vacuum ofte
places an inconvenient constraint on many applications, s
as small mass measurement through resonance frequ
shift. This has been used for biological cell detection@5#,
which would be far more useful in either standard air or
liquid. The accuracy of measurement of the peak freque
shift depends on theQ factor of the beam. Recent exper
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ments of Sekaricet al. @6# use laser-light driving to over-
come fluid damping losses in a paddle-beam structure o
lating in air at atmospheric pressure. Quantification of flu
effects at scales relevant to these applications has foc
strongly on continuum flows@3,7,8#. In this paper we presen
a framework which enables simple calculations with eithe
continuum or noncontinuum approach, as appropriate to
problem. Calculations for beams of submicrometer a
10 mm width suggest a surprising advantage of the use
submicrometer scale beams over larger beams in air
atmospheric pressure.

Two aspects are worth noting as the beam approac
submicrometer scale. First, the continuum limit can bre
down even at atmospheric pressure, as seen in Fig. 1. T
the usual quasisteady Stokes drag estimate needs to b
placed by rarefied gas flow results. Second, these beams

,

FIG. 1. Continuum, free molecular, and crossover flow regim
as a function of beam size and pressure in dry nitrogen at ro
temperature~300 K!.
©2004 The American Physical Society07-1
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cally have a high frequency, on the order of 102 MHz, with
stronger unsteady effects, if in continuum flow. Unstea
effects have two manifestations:~1! the presence of an adde
mass associated with the force to accelerate surroun
fluid, and~2! a frequency dependence of the damping co
ficient. In this paper, we study fluid damping and its con
quence onQ factor in both the molecular and the unstea
continuum limit. To do so, we first relateQ for the beam in a
fluid to theQ value in vacuum.

TheQ factor for a linear harmonic oscillator with massM,
stiffnessK (v05AK/M ), and dampingC, defined in terms
of average energy stored and dissipated per cycle, ma
written as

Q52p
Estored

Ediss
5

K1Mv2

2Cv
5

Qp
22

1

4

AQp
22

1

2

, ~1!

whereQp5AMK/C is a property-dependent, dimensionle
factor. The expression in terms ofQp is obtained by evalu-
ating Q for beam oscillation frequencyv equal to the
damped resonance peak frequency,

vd5F K

M S 12
C2

2MK D G1/2

5v0F12
1

2Qp
2G 1/2

. ~2!

When Qp@1, Q reduces toQp and vd to v0. However, if
the damping is significant, even when the motion rema
harmonic,vd will be significantly different from the natura
frequency in vacuum and iteration between Eq.~2! and the
calculation below for fluid damping is required. To includ
damping forces due to ambient fluid we define total damp
C5Cs1Cf , where the subscriptss, f denote structura
~solid! and fluid quantities respectively. In some regimes
flow, the force on the beam due to the fluid, opposing
motion, in phase with the acceleration, is significant. T
may be represented by an added massM f and the oscillating
beam may be considered to have an effective massM5Ms
1M f .

From Ref. @1#, the undamped resonance frequency o
beam of lengthl, width w ~normal to oscillation!, and thick-
nesst, in the absence of fluid added mass, is given by

v05AKs

Ms
5~C1!2A EI

Msl
3
5~C1!2A E

12rs

t

l 2
, ~3!

whereKs , rs , E, and I are the effective stiffness, densit
Young’s modulus, and cross-sectional moment of inertia
the solid beam.C1 is 1.88 for cantilever beams and 4.73 f
doubly clamped beams vibrating in the fundamental mode
the effective stiffnessK in the fluid remains unchanged from
its value in vacuumKs , given by Eq.~3!, substituting for
effectiveM , K, andC in Qp , we obtain

Qp5FC1
2S Ers

12 D 1/2wt2

l GF 1

Cs
GF @11~M f /Ms!#

1/2

11~Cf /Cs!
G . ~4!
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Terms in the third set of large square brackets yield the mo
fication ofQp due to fluid added mass and damping and ha
value 1 in vacuum. Terms in the first set of large squ
brackets show that the scaling dependencies ofQp on geom-
etry and properties,w1,t2,l 21,(Ers)

1/2 accrue from beam
solid mass and stiffness alone, which is useful in determin
the scaling properties of the structural damping coeffici
Cs from measuredQp in vacuum.

We now move to the task of determining fluid relate
effects, specifically the values for dampingCf and added
massM f , where it is relevant. Operation with beam oscill
tors in a gaseous environment, at low pressures or w
nanoscale beams at atmospheric pressure, may give ris
situations where the mean free path of gas molecules is
small compared to beam size. In this case, the molec
number density and properties such as density and visco
computed from it will show large, discontinuous fluctuatio
about their mean values; solutions of the Navier-Sto
equation which consider the fluid as a continuum are
longer valid. With decreasing beam size, the departure fr
continuum increases and the fluid moves to the regime
free molecular flow. In this regime, a large mean free p
with respect to beam size and distance from walls imp
that molecules which suffer a collision with the beam a
unlikely to suffer a second collision with it. The velocit
distribution function of molecules seen by the beam w
therefore remain unchanged as a result of the motion of
beam and allows for a simpler computation of force on
beam.

For gases, determining the regime of flow is clearly t
first step in calculating fluid forces on the beam. To do so,
compute the mean free path (l m f p). For a dilute gas with
molecules modeled as hard spheres of a single diameted,
the scattering cross sections5pd2 @9#, the mean free path
scales inversely withs and number densityn:

l m f p5
1

A2sn
50.23

KBT

d2P
, ~5!

whereKB is the Boltzmann constant,T and P the absolute
temperature and pressure, respectively. Withd'0.37 nm,
for air at standard temperature and pressure,l m f p'65 nm.

The Knudsen number Kn measures the ratio of the m
free path of gas molecules to the size of the beam. For l
beams, we note that the appropriate measure of beam siz
fluid interaction isw, the transverse dimension normal to th
direction of motion, hence Kn5 l m f p /w. The undamped
resonance frequency, however, varies linearly with thickn
t and is independent ofw, hence we may specify the bea
using l ,w,t or l ,w,v0.

For air under isothermal conditions, the flow is in th
continuum regime for Kn<0.01, in the free molecular re
gime for Kn.10; 0.01<Kn<10 defines a crossover regim
where neither continuum nor free molecular flow adequat
describe gas behavior@10#. Figure 1 shows the flow regime
for beams of three widths, 10mm, 100 nm, and 2 nm. The 2
nm carbon nanotube would be in the free molecular reg
up to pressures of 1 atm. Like the 100 nm beam, a continu
7-2
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EFFECT OF FLUIDS ON THEQ FACTOR AND . . . PHYSICAL REVIEW E69, 036307 ~2004!
Navier-Stokes solution is inappropriate for it even at pr
sures in tens of atmospheres. The largest 10mm beam will
begin to show continuum behavior at pressures above 1

In the continuum regime, the fluid densityr f5mn, where
m is the mass of one molecule. For dilute gases, from kin
theory, the dynamic viscosity is

m50.45mnUthl m f p . ~6!

HereUth5A3KBNT/Mm is the root mean square value fro
the Maxwellian distribution for molecular velocity,N is
Avogadro’s number, andMm is the molecular weight in kg
mol ~e.g., 0.028 for N2). The coefficient 0.45, from Ref
@10#, is obtained using a hard sphere molecular model
interactions and yields values in close agreement with th
tabulated from experiment for common gases at atmosph
pressure. Sincel m f p is inversely proportional to densityn,
the dynamic viscosity is independent of fluid density. F
consistency, we will usem, calculated by Eq.~6!, as a pa-
rameter for presentingCf in nondimensional form in all the
flow regimes as shown in Fig. 2.

We first derive the force on the beam in the free molecu
limit. Assuming that all the molecules are specularly
flected, the drag forceFd is caused by the difference in mo
mentum exchange of the gas molecules striking the front
back of the moving beam. A simplified calculation for
plane of lengthl, width w, and molecular velocityUth along
the direction of motion of the beam yields

Cf5
Fd

u
52 mnUthlw. ~7!

A more exhaustive treatment for a beam of cylindrical geo
etry, valid for nonspecular reflection and arbitrary Ma

FIG. 2. Nondimensional gas damping coefficient, computed
dry N2 at 300 K for beams with~a! w5100 nm, 530 MHz fre-
quency, ~b! w510 mm, 1 MHz frequency and aspect ratiol /w
520. Short vertical lines on each curve mark the change from
free molecular solution~damping varies linearly with pressure! to
the steady Boltzmann-BGK crossover solution, which underpred
unsteady damping and shows a jump at the continuum limit. T
perature and molecular weight of the gas are the only other inp
03630
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number, may be found in Ref.@11#. After evaluation of four
integrals at vanishingly small Mach numbers, this soluti
yields Eq.~7!, with a nearly identical constant~2.03!. Damp-
ing coefficients for two beams as a function of pressure
this regime, plotted in Fig. 2, are 2–5 orders of magnitu
lower than the quasisteady continuum solution.

In the crossover regime between free molecular and c
tinuum flow, the velocity distribution function of molecule
interacting with the beam begins to show a deviation due
previous interactions with it. In this regime, we use a so
tion of the Boltzmann equation with the BGK model, whic
employs a simplified collision operator with a single tim
scale~for a discussion of the BGK model, see, for examp
Ref. @10#!. From this solution for flow past a cylinder@12#,
we obtain a value for the damping coefficient,

Cf5
Fd

u
5mnUthlwFp3/2Kn

a G , ~8!

a5 lnS 2ApKn

S D 2g1
1

2
1LApKn, ~9!

whereS, the Mach number, is the ratio of beam velocity
the molecular velocity andg is the Euler constant50.5772.
In this regime, the assumption that all molecules are spe
larly reflected is incorrect.L, dependent on the slip velocity
varies between 1 and 1.5 in the Knudsen number ra
0.01–50. We note that the tabular values forL in Ref. @12#
can be approximated to within 2% rms~and 4% maximum!
error, by

L511
1

2
~12e2Kn/2!. ~10!

The crossover solution@12# is valid for low Mach number
S. If the Mach number is not low enough,a in Eq. ~8! be-
comes zero, then negative, leading to large unphysical va
for Cf . The low Mach number requirement effectively r
stricts use of this solution to values of Kn such thata>3. In
the high Knudsen number limit, the expression in parent
ses in Eq.~8! tends to a constant value close to 2, in acco
with the free molecular solution, Eq.~7!. At the low end of
the crossover regime, approaching continuum flow, the
pression yields values almost equal to Kn. This solution
dampingCf is plotted in Fig. 2.

We now consider the case when the continuum limit
fluid flow around the oscillating beam holds, as for liqui
and for gases when the mean free path of molecules is m
less than the diameter of the beam. Stokes’ familiar qu
steady solution is frequently used for a quick estimate.
small oscillating beams, such an estimate can be over
orders of magnitude too low, when compared to experime
@7# and to calculations using a solution which correctly a
counts for the frequency dependence, as presented in re
work ~e.g., Refs.@3,7#!.

Two relevant dimensionless parameters arise for unste
incompressible flow~divergence-free velocity fieldu!, gov-
erned by the Navier-Stokes~NS! equations,

]u

]t
1~u•“ !u52

“p

r f
1nDu. ~11!
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The Reynolds number, Re5(Uw/n), which measures the
strength of the nonlinear inertial forces to viscous forces
based on the oscillation velocity (U5Av), whereA is the
oscillation amplitude.n5m/r f is the kinematic viscosity.
The second, a frequency parameter,Pv5(U/vw)5(A/w),
is the ratio of the nonlinear term to the time-derivative te
in the NS equations. If the oscillation amplitudeA is small
compared to the beam lateral dimensionw, Pv is small. If Re
andPv are both small, the nonlinear term is small compa
to both viscous and time derivative terms and a solution
the NS equation which neglects the nonlinear term wh
retaining the time derivative term is appropriate. Stokes’
miliar formulas for drag from steady viscous flow around
sphere (6pmRu) or cylinder are solutions which neglec
both the nonlinear term as well as the unsteady term.
typical micro-oscillator frequencies, the velocity gradie
generation at the oscillator wall~time scale 1/v! is faster than
can be smoothed by viscosity~time scalew2/4n) and the
unsteady term may not be neglected. The steady solu
does not account for the frequency dependence of dam
and does not correctly represent its variation with beam
and fluid properties.

For long beams with a cross section of aspect ratio n
one, we use the unsteady solution for flow around a lo
cylinder oscillating normal to its axis, also due to Stok
discussed in Rosenhead@13#. This solution is presented in
terms of two dimensionless parameterskc for fluid damping
andkm for fluid added mass. They are calculated in terms
modified Bessel functions involving a single dimensionle
parameterb, which measures the strength of the time deriv
tive term with respect to the viscous term.b is related to
familiar physical quantities through

b5~vw2/4n!50.5~w/d!25~Re/4Pv!, ~12!

whered5A2n/v measures the viscous layer thickness.
avoid ambiguities in selecting the correct Bessel functio
we present in Ref.@14#, six lines of code for the commonly
available software programMATLAB , which enables calcula
tion of kc and km , based on a more convenient equivale
expression for the solution@3#. The fluid damping coefficien
Cf we require is related tokc through

Cf5pm lbkc . ~13!

For a fixed dynamic viscositym5nr f , the dimensionless
productbkc specifies the dependence of fluid damping
beam width, oscillation frequency and fluid density. It
plotted in Fig. 3. When the viscous layer thickness is mu
larger than beam size, it approaches the constant value o
from the quasisteady Stokes solution for a long beam (l /w
520). It increases rapidly with decreasing viscous la
thicknesses below beam width (d/w,1), showing that large
errors will result from using Stokes’ steady solution f
damping in this range. For example, Fig. 2 shows the p
sure and damping value ranges associated with contin
flow for two beams. In this range, for thew5100 nm, l
52 mm beam, frequency 500 MHz,d/w varies from 0.77 to
0.24 and from Fig. 3, nondimensional damping varies fr
4.5 to 10 times the quasisteady value. For thew510 mm,
03630
is

d
f

e
-

or
t

on
ng
e

ar
g
,

f
s
-

o
s,

t

h
.1

r

s-
m

l 5200 mm beam, with a frequency of 1 MHz,d/w varies
from 0.38 to 0.05 and nondimensional damping varies fr
7 to 40 times the quasisteady value. This shows that
typical micrometer and nanometer scale beams, at press
within the continuum range,d/w,1, and we can have a
large contribution from unsteady effects. The jump discon
nuity at the crossover-continuum interface in Fig. 2 aris
from the fact that for these oscillators, while higher dampi
due to unsteady effects is correctly captured by the c
tinuum solution, all available crossover solutions are
stricted to steady flow and hence approach the quasiste
Stokes solution at the continuum end. Development of so
tions which include the effects of unsteadiness would be
value to accurate calculations for oscillators in this regim

Rewriting Eq.~13! using Eq.~6! for viscosity, damping

Cf5@1.41bkcKn#mnUthwl ~14!

shows a linear dependence on Kn, consistent with the cr
over solution. We have shown that fluid dampingCf in a
gaseous environment for the beam in all flow regimes
proportional to (mnUthwl). We have specified how the pro
portionality constants or dimensionless groups may be ca
lated from beam geometry, oscillation frequency and gas m
lecular weight, pressure, and temperature for each of
three regimes. In liquids, the kinematic viscosity, beam s
and frequency may be used with Eq.~12! and Ref.@14# to
determine fluid damping. The value ofCf is used in Eq.~4!
to calculate the quality factorQp . Effective dampingC
5Cs1Cf is used in Eq.~2! to check the frequency chang
due to fluid damping.

In the continuum regime where added mass effects m
be significant, the modification toQp due to fluid added mas
in Eq. ~4! is the factor

Rm5~11M f /Ms!
1/25S 11

r f

rs
kmD 1/2

, ~15!

FIG. 3. Unsteady NS solution for fluid damping and added m
for a long cylinder in continuum flow, valid for liquids and fo
gases with Kn,0.01.
7-4
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and the effective mass,M5MsRm
2 , may be used in Eq.~2!

to check the frequency change due to fluid added mass.
factor Rm is governed by two dimensionless parameters,
ratio of fluid to solid density, andkm , which specifies,
through b, the fluid added mass dependency on kinema
viscosity, oscillation frequency and beam width.km , calcu-
lated as in Ref.@14#, is plotted in Fig. 3. It reduces to th
inviscid limit of 1 as the kinematic viscosity becomes sma
For dry N2 at 10 atm and 300 K, and for the beams in Fig.
Rm is 1.007, 1.005, making the effective mass 1.4 and
higher than beam solid massMs , for the 0.1 and 10mm
beams, respectively. For the same beams in water the fa
Rm is 1.46, 1.32 with beam effective mass 2.1, 1.7 timesMs
and in mercury,Rm is 3.14, 2.86, with beam effective mas
9.9, 8.2 timesMs .

The resulting variation ofQ factor with pressure in dry
nitrogen is plotted in Fig. 4 for two beams and is seen to
in accord with available experimental data. The values foQ
in vacuum have been taken from experimental data@1,2#.
The pressure limit below which fluid damping causes a n
ligible decrease in theQ factor is 1 mtorr for a 10mm wide
cantilever beam and about 1 torr for the 100 nm wide be
This limit depends on the fluid, beam size, and value ofQ in
vacuum~or Cs) and may be calculated as shown here.

In vacuum, the larger beam with higher surface to volu
has a higherQ factor. But in the presence of air, as th
pressure is increased, theQ factor of the larger beam begin
to decrease at an earlier pressure. This results in a reve
with theQ factor of the smaller beam being over an order
magnitude higher than that of the larger beam. This reve
of theQ factor at low pressure is due to the fact that damp
varies linearly with width in the free molecular regim
In the continuum regime, it is sustained by the unsteady
fects on damping. The width dependence of damping (bkc)
from the unsteady solution is not seen in the quasiste
Stokes solution.

These results are particularly interesting for instrum
design as they suggest that moving to submicrometer-s
ar

.

P.
. B

r,

A

ics

03630
he
e

ic

.
,

tor

e

-

.

e

al,
f
al
g

f-

y

t
ed

oscillators should significantly improve theQ factor when
constrained to work in air. Over a large range of pressu
long beams of several micrometers width suffer seriou
from air damping while submicrometer scale beams do n
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the Cornell Center for Materials Research. We wish to tha
L. Sekaric for an introduction to the problem, Harold Crai
head for his strong support and encouragement of this w
D. Koch and J. Parpia for insightful questions and disc
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FIG. 4. CalculatedQ factor as a function of pressure in dr
nitrogen at 300 K, for beams with aspect ratiol /w520 and~a! w
5100 nm, 530 MHz frequency, doubly clamped beam~solid line!
~b! w510 mm, 85 kHz frequency, cantilever beam~dashed line!.
Experimental data~* ! are from Fig. 4 of Yasumuraet al. @15#. A
more complete unsteady Boltzmann solution, currently unavaila
to the authors, would remove the jump discontinuity at t
crossover-continuum interface, as roughly indicated by the li
solid lines.
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